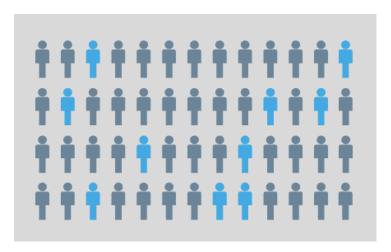
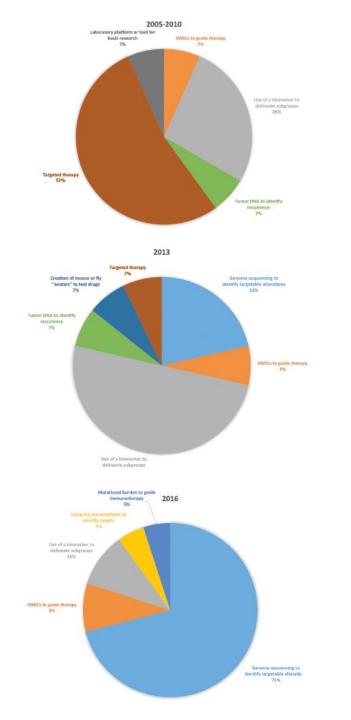


Personalised medicine in digestive cancers

Claudia Cardone, MD PhD


Oncologia Clinica Sperimentale Addominale Istituto Nazionale Tumore IRCCS Fondazione G Pascale, Napoli


Outline


- Personalised medicine: definition
- ESCAT level of evidence
- Agnostic Biomarkers
- Upper GI Biomarkers
- Lower GI Biomarkers
- Personalised medicine: a different perspective

What is personalised medicine (in oncology)?

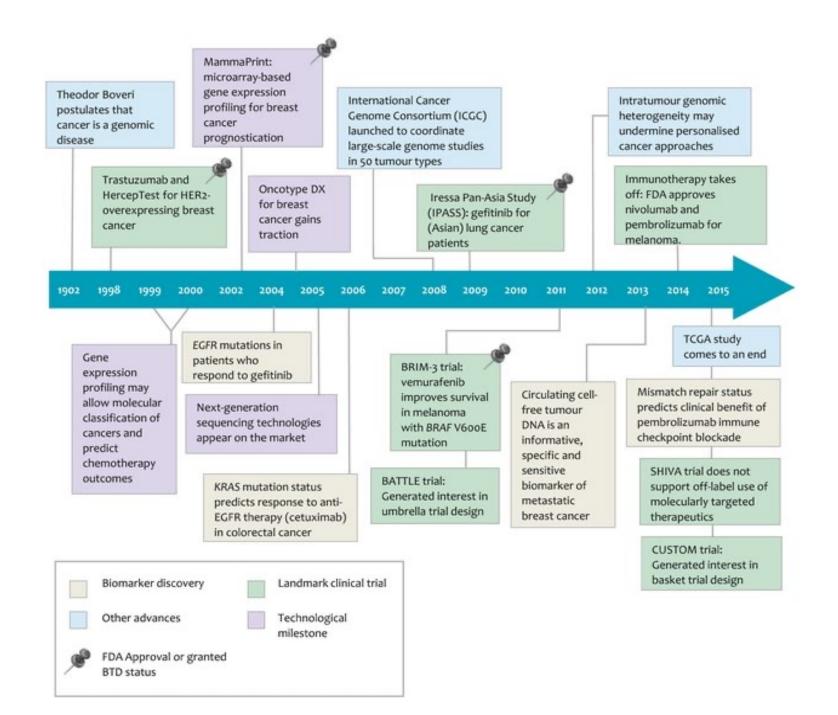
"The goal of precision medicine is to deliver the right cancer treatment to the right patient at the right dose and the right time."

Schwartzberg et al 2017 asco.org/edbook ASCO EDUCATIONAL BOOK

Use of the term 'Precision Oncology' over time

Google Scholar query for the term "precision oncology" over 3 time-intervals

2005-2010 Use of targeted therapies \rightarrow vascular endothelial growth factor (VEGF) inhibitors (bevacizumab) or *BCR/ABL1* inhibitors (imatinib). This use has largely ceased.


2013

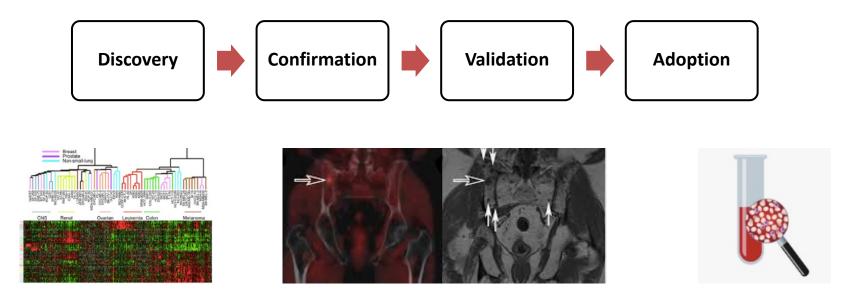
Using data from analyses of biomarkers. Examples: the use of crizotinib in patients with lung cancer harbouring EML4-ALK rearrangements adjuvant chemotherapy guided by genomic testing e.g. the Oncotype DX panel in women with breast cancer

2016

Using data from next-generation sequencing to **guide therapies**, a definition that was used in 15 of 21 articles reviewed, all published since January 1, 2016.

V.Prasad and RP Gale ascopost.com/issues/january-25-2017

Precision oncology timeline

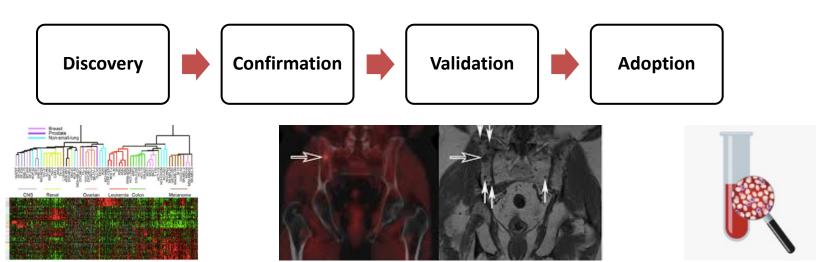

Syn et al 2017 exp opin on drug met

What is a biomarker?

"A characteristic that is objectively measured and evaluated as an indicator of a physiological or pathogenic process or pharmacologic response to therapeutic intervention "

1998 NIH Biomarkers definition Working Group

A quantifiable parameter providing insight into a biologic process


What is a biomarker?

Prognostic

- Indicates likely the course of the disease, indipendently of treatemnt
- Inform about an estimate of outcome probability
- Not a predictor of treatment benefit

Predictive

- Associated with response / lack of benefit to a treatment
- Inform about treatment efficacy in a specific population

Report from NGS Panel

Genomic Signatures

Microsatellite status - MSI-High Tumor Mutational Burden - TMB-High (61 Muts/Mb)

Gene Alterations

For a complete list of the genes assayed, please

Gene Alterations	(unknown significance)
------------------	------------------------

KRAS wildtype	APC	ARID1A	AXIN1	AXL
NRAS wildtype	N944T	G187S	G265fs*149	H292fs*5
FBXW7 S668fs*39	BCOR R1136C	BRCA2 A2351T and \$1437N	CBL T2311	CD22 splice site 1771+2T>C
PTEN Y76del	EPHA3	EPHB4	ERBB4	FGFR4
RNF43 G659fs*41, R145*	K713T	V330M	R1273Q	N228S and R54C
STK11 E57fs*106	HGF G375D and R178Q	ID3 549T	JAK3 1955T	KDM5A E1137fs*13 and R1051Q
ARID1A T1917A, G276fs*87	LTK	MPL	MTOR	NF1
ASXL1 G645fs*58	R647Q	R390C	R2193C	R1396H
CDH1 F462fs*19	NKX2-1 S233G	P2RY8 A188T	PARP1 S507fs*17	PDGFRB L726fs*7 and V886M
CIC T1541fs*79	PIK3C2B	PIK3CA	PIM1	POLD1
CREBBP V95fs*29	E1507fs*12	P397H	P309L	A223T and R465W
FAM46C A232T	RET L1048fs*11	RNF43 G360D	SDHA P477S	SGK1 M171
FLCN H429fs*39, W306*	SOX9	SPOP	STK11	TET2
KDM6A R1351*	M109V	A303V	E223K	S1776F
MLH1 R226*	TSC1 R908W	WT1 E479K	ZNF703 A514S	
MLL2 P2354fs*30				
MSH3 splice site 1897-1G>A,				
K383fs*32				Patier
MSH6 Y524fs*1, F1088fs*2, R361H		MSI-High		
SDHA R379C		Chromatin re	modeling	Site: Naple
TP53 R248Q				

Ravello trial

Patient 2001

Site: Naples (Pascale)

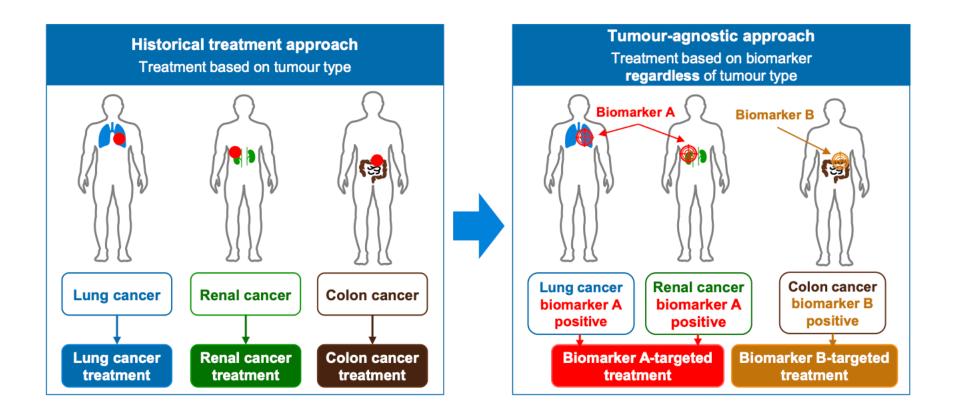
Annals of Oncology 0: 1–8, 2018 doi:10.1093/annonc/mdy263

Not all biomarkers have clinical implications

SPECIAL ARTICLE

A framework to rank genomic alterations as targets for cancer precision medicine: the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT)

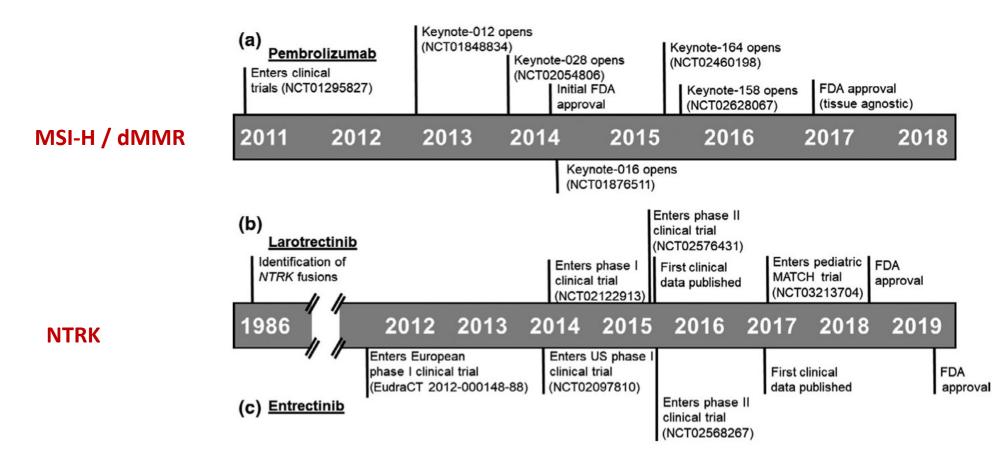
J. Mateo¹, D. Chakravarty², R. Dienstmann¹, S. Jezdic³, A. Gonzalez-Perez⁴, N. Lopez-Bigas^{4,5}, C. K. Y. Ng⁶, P. L. Bedard⁷, G. Tortora^{8,9}, J. -Y. Douillard³, E. M. Van Allen¹⁰, N. Schultz², C. Swanton¹¹, F. André^{12*} & L. Pusztai¹³


This first version of the ESMO Scale of Clinical Actionability for molecular Targets (ESCAT) defines six levels of <u>clinical evidence</u>

ESCAT levels of evidence

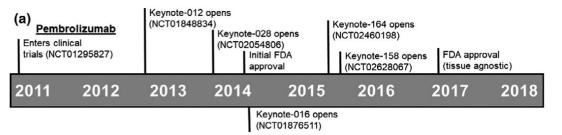
- **1. ESCAT Tier I: Target suitable for routine use** and recommend specific drug when specific molecular alteration is detected
- 2. ESCAT Tier II: Investigational targets likely define a patient population that benefits from a targeted drug, additional data are needed
- **3. ESCAT Tier III**: clinical benefit previously demonstrated in other tumour types or for related molecular targets
- 4. ESCAT Tier IV: Preclinical evidence of actionability
- 5. ESCAT Tier V: Evidence of relevant antitumour activity, not resulting in clinical meaningful benefit as single treatment but supporting development of co-targeting approaches
- 6. ESCAT Tier X: Lack of evidence for actionability.

Tumor Agnostic biomarkers



Tumor-agnostic therapy uses the same drug to treat all cancer types that have the genetic mutation (change) or biomarker that is targeted by the drug. It is a type of targeted therapy.

Rosas Oncol Ther 2020


Agnostic biomarkers

Several biomarkers have agnostic indication : MSI, TRK, TMB and, recently, BRAF

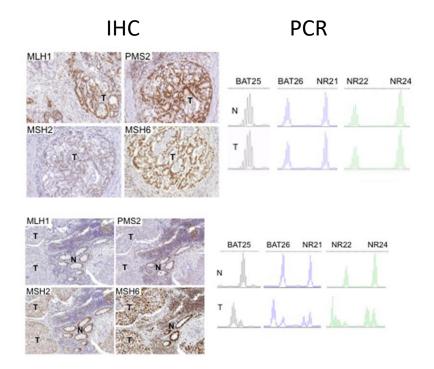


Figure 1 Clinical drug development timeline for FDA-approved tissue-agnostic therapies. Timeline of clinical development for current FDA-approved tissue-agnostic therapies including (**a**) pembrolizumab, (**b**) larotrectinib, and (**c**) entrectinib. FDA, US Food and Drug Administration.

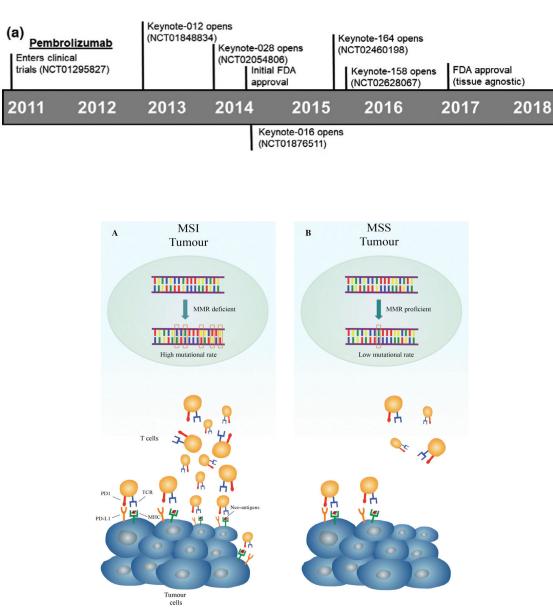
MSI d-MMR

Techniques: IHC / PCR / NGS

ESMO biomarker factsheet

MSI-H cancer cells may have a defect in the ability to correct mistakes that occur when DNA is copied in the cell.

MSI-H = microsatellite instability dMMR = deficient mismatch repair


Causes of dMMR/MSI-H:

- Mutation in DNA repair proteins (Can occur in Lynch syndrome)
- Inactivation of DNA repair proteins

Frequency

- CRC 15%
- Gastric 15%
- Duodenal 10%
- esophageal 5% (Barret)
- Pancreas 1%

MSI d-MMR

Ratti et al 2021

Impairment in mismatch repair causes:

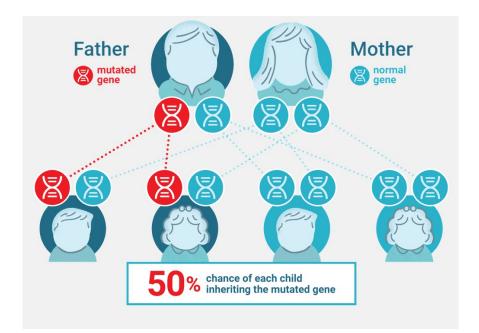
 $-\uparrow\uparrow\uparrow$ mutations in tumors

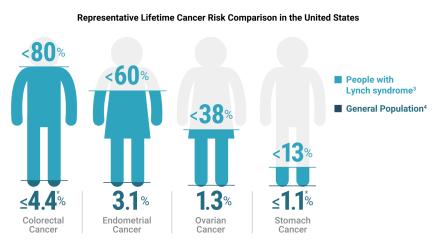
- Some mutations (neo-antigens) may be targeted by immune system

Checkpoint inhibitors (i.e Pembrolizumab) can facilitate immune system response in MSI-H/dMMR cancers

ORIGINAL ARTICLE

PD-1 Blockade in Tumors with Mismatch-Repair Deficiency


D.T. Le, J.N. Uram, H. Wang, B.R. Bartlett, H. Kemberling, A.D. Eyring,


dMMR- MSIH (pooled data) - immunotherapy					
Cancer type	Ν	ORR	Duration response		
CRC	90 (40%)	36%	1.6-22.1		
Biliary	11 (7.4%)	46%	11.6-19.6		
Gastric	9 (6%)	27%	5.8-22.1		
Pancreatic	6 (4%)	56%	2.6-9.2		
Esophageal	1 (0.7%)	na	18.2		

Lynch Syndrome

MSI is also a diagnostic marker: useful to screen/ diagnose Lynch Syndrome

- Lynch syndrome, hereditary nonpolyposis colon cancer
- It is a common form of hereditary CRC (3–5% of CRC)
- Caused by autosomal dominant mutations to MMR genes (*MLH1*, *MSH2*, *MSH6* or *PMS2* and *EPCAM* gene that inactivates *MSH2*)
- In addition to CRC , Lynch syndrome is associated with other cancers, i.e endometrial, ovarian and gastric cancer.



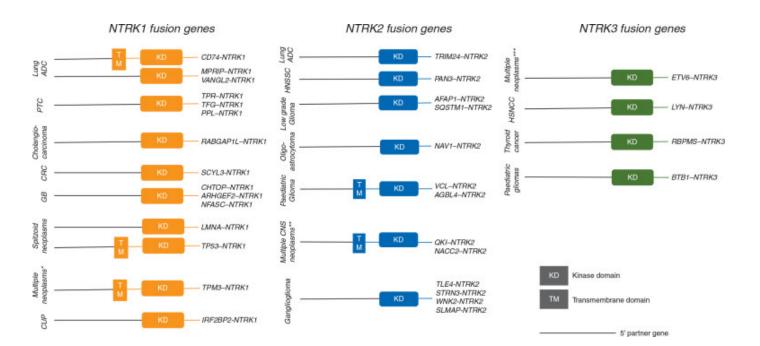
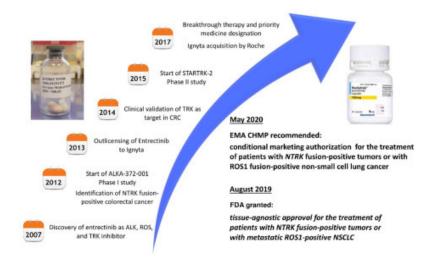
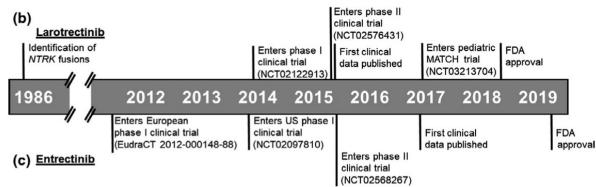

*Value shown for males, lifetime risk for females is 4.1% (colon) and 0.66% (stomach).

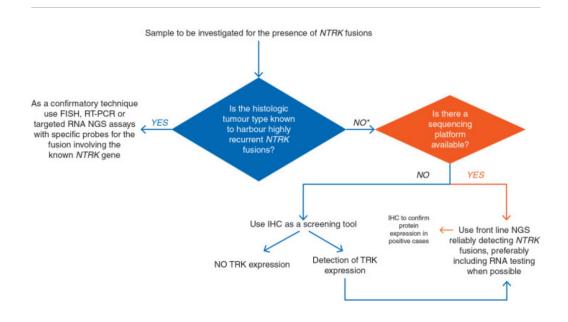
Image Source: Itapromega.it, last accessed 2.6.22


NTRK

1982: an inversion within chromosome 1 resulting in a fusion oncogene that was named *TRK* (tropomyosin receptor kinase)


History of Entrectinib: From Bench to Bedside

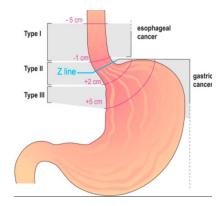
Frequency


<1% More common in MSI tumors

NTRK

Who? any malignancy at an advanced stage, in particular if it has been proven wild type for other known genetic alterations tested in routine practice, and especially if diagnosed in young patients'.

Techniques: IHC / FISH / RT-PCR/ RNA-and DNA-based NGS


Summary of the ESMO Translational Research and Precision Medicine Working Group recommendation

2 generations of TRK inhibitors

nib Entrectinib	Taletrectinib (DS- 6051b/A8-106)	Repotrectinib	Selitrectinib	ICP-723
		[TPX-0005]		
TRK A/B/C, ROS1, ALK	TRK A/B/C, ROS1	TRK A/B/C, ROS1, ALK	TRK A/B/C	TRK A/B/C, ROS1
0.1-1.7	3-20	<0.2	<5	Not reported
0.6-1	Not reported	0.028-0.057	0.017-0.025	Not reported
61%	Not reported	7/13 patients with NTRX mutation	9/20 patients with NTRK mutation	4/6 (dose escalation)
13.8	Not reported	Not reported	Not reported	Not reported
No	Yes	Yes	Yes	Yes
		Haratake Clin Lun	g Cancer 2021, Dillon A	SCO 2022, Wei ASCO
	0.1-1.7 0.6-1 61% 13.8	0.1-1.7 3-20 0.6-1 Not reported 61% Not reported 13.8 Not reported	0.1-1.7 3-20 <0.2	0.1-1.7 3-20 c0.2 <5

Marchio Ann of Onco 2021

UPPER GI - Esophageal and Gastric cancer

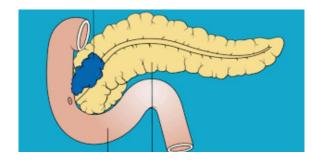
Biomarker	Stage/ Prevalence	Technique	Actionability	bana Mada MUNAD - yaka
HER2	IV / 15-25%	IHC , FISH, NGS	Anti-HER2	A grant and a gran
PDL1 (CPS)	IV	IHC	ICI	
EBV	IV / 10%	ISH , PCR	NA	
MSI	IV / 10%	IHC, PCR	ICI	
NTRK	IV / <1%	IHC, NGS	Anti-NTRK	

UPPER GI - Esophageal and Gastric cancer

Is it useful to order a NGS panel?

There is **no current need to perform tumour multigene NGS** in patients with mGC in daily practice.

Detection of MSI and NTRK fusions should be done using cheap standard methods.


F. Mosele et al Ann of Onc 2020

	7. List of gen tatic gastric ca	omic alterations level I/II/III according to ESCAT in ncer (mGC)
Gene	Alteration	Prevalence ESCAT References

Gene	Alteration	Prevalence	ESCAT	References
ERBB2	Amplifications	16%	IA	The Cancer Genome Atlas Research Network. <i>Nature.</i> 2014 ¹⁰² Bang Y-J, et al. <i>Lancet.</i> 2010 ¹⁰³
	Hotspot mutations	3%	IIIA	Hyman D, et al. <i>Nature</i> . 2018 ⁵⁵
	MSI-H	8%	IC	The Cancer Genome Atlas Research Network. <i>Nature</i> . 2014 ¹⁰² Marcus L, et al. <i>Clin Cancer Res</i> . 2019 ⁹⁷
NTRK	Fusions	2%	IC	Drilon A, et al. <i>N Engl J Med.</i> 2018 ⁴⁸
EGFR	Amplifications	6%	IIB	Maron S, et al. <i>Cancer Discov.</i> 2018 ¹⁰⁴
MET	Amplifications	3%	IIB	Lennerz J, et al. <i>J Clin Oncol.</i> 2011 ¹⁰⁵
	Mutations	1.3%	IIIA	Lee J, et al. Oncotarget. 2015 ¹⁰⁷
РІКЗСА	Hotspot mutations	7%	IIIA	Juric D, et al. <i>J Clin Oncol</i> . 2018 ⁹⁰
FGFR2	Amplifications	4%	IIIA	Van Cutsem E, et al. Ann Oncol. 2017 ¹⁰⁹ Loriot Y, et al. N Engl J Med. 2019 ¹¹⁰
ATM	Mutations	3%	IIIA	Bang Y-J, et al. <i>Lancet Oncol.</i> 2017 ¹⁰⁸
BRCA1/ 2	Mutations	1%—5%	IIIA	Balasubramaniam S, et al. <i>Clin</i> <i>Cancer Res.</i> 2017 ⁶³
ROS1	Fusions	<1%	IIIA	Shaw A, et al. Ann Oncol. 2019 ⁴⁶
RET	Fusions	<1%	IIIA	Oxnard G, et al. <i>J Thorac Oncol.</i> 2018 ¹⁰⁶
ERBB3	Hotspot mutations	3%	IIIB	Hyman D, et al. <i>Nature.</i> 2018 ⁵⁵

ESCAT, European Society for Medical Oncology (ESMO) Scale for Clinical Actionability of molecular Targets; MSI-H, microsatellite instability-high.

UPPER GI - Pancreatic cancer

Biomarker	Stage/ Prevalence	Technique	Actionability	1.0 Olaparib 7.4 Placebo 3.8
BRCA 1-2	IV 3 % Germline Somatic	PCR, NGS	Platinum +/- olaparib	0.8 HR: 0.53 (95% CI: 0.35-0.82; P = .004) Ka 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
HER2	IV / <1%	IHC , FISH , NGS	Anti-HER2 (trial, off label)	 Question 14 18 22 26 30 34 38 42 46 5(Mo Since Randomization ORR: olaparib, 23.1%, placebo, 11.5% Gelan. NEIM. 2019;381:317.
MSI	IV / 5%	IHC, PCR	ICI	
NTRK	IV / <1%	IHC, NGS	Anti-NTRK	

UPPER GI - Pancreatic cancer

Is it useful to order a NGS panel?

It is not currently recommended to perform tumour multigene NGS in patients with advanced PDAC in daily practice.

Considering the unmet medical needs and the high number of alterations ranked as level IIeIV, ESMO considers it is the mission of clinical research centres and their networks to propose multigene sequencing to patients with advanced PDAC in the context of molecular screening programmes, in order for patients to get access to innovative drugs.

If multigene sequencing is not carried out, detection of MSI and NTRK fusions should be done using cheaper standard methods, pending drugs are approved and reimbursed.

F. Mosele et al Ann of Onc 2020

 Table 8. List of genomic alterations level I/II/III according to ESCAT in advanced pancreatic ductal adenocarcinoma (PDAC)

Gene	Alteration	Prevalence	ESCAT	References
BRCA1/2	Germline mutations	1%—4%	IA	The Cancer Genome Atlas Research Network. <i>Cancer</i> <i>Cell.</i> 2017 ¹¹¹ Golan T, et al. <i>N Engl J Med.</i> 2019 ¹¹²
	Somatic mutations	3%	IIIB	Shroff R, et al. JCO Precis Oncol. 2018 ¹¹³
	MSI-H	1%—3%	IC	Pihlak R, et al. <i>Cancers.</i> 2018 ¹¹⁵ Marcus L, et al. <i>Clin Cancer</i> <i>Res.</i> 2019 ⁹⁷
NTRK	Fusions	<1%	IC	Cocco E, et al. <i>Nat Rev Clin</i> <i>Oncol.</i> 2018 ¹¹⁴ Doebele RC, et al. <i>Lancet</i> <i>Oncol.</i> 2020 ⁵⁰
KRAS	Mutations	90%	IIIA	Zeitouni D, et al. <i>Cancers</i> . 2016 ¹¹⁶
PIK3CA	Hotspot mutations	3%	IIIA	Heestand G, et al. <i>Oncotarget</i> . 2015 ¹¹⁷ Payne S, et al. <i>J Clin Oncol</i> . 2015 ¹¹⁸
BRAF ^{V600E}	Mutations	3%	IIIA	Hyman D, et al. N Engl J Med. 2015 ¹¹⁹
MDM2	Amplifications	2%	IIIA	Azmi A, et al. <i>Eur J Cancer.</i> 2010 ¹²⁰
ERBB2	Amplifications/ mutations	1%—2%	IIIA	Waddell N, et al. <i>Nature.</i> 2015 ¹²¹ Harder J, et al. <i>Br J Cancer.</i> 2012 ¹²² Hyman D, et al. <i>Nature.</i> 2018 ⁵⁵
NRG1	Fusions	1%	IIIA	Jones M, et al. <i>Clin Cancer</i> <i>Res.</i> 2019 ¹²³
ALK	Fusions	<1%	IIIA	Singhi A, et al. J Natl Compr Canc Netw. 2017 ¹²⁴
RET	Fusions	<1%	IIIA	Drilon A, et al. <i>J Clin Oncol.</i> 2018 ⁹¹
ROS1	Fusions	<1%	IIIA	Pishvaian M, et al. <i>J Clin</i> <i>Oncol.</i> 2018 ¹²⁵

ESCAT, European Society for Medical Oncology (ESMO) Scale for Clinical Actionability of molecular Targets; MSI-H, microsatellite instability-high.

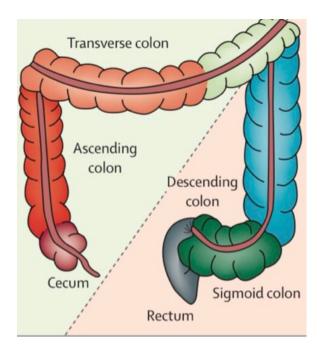
UPPER GI - **Biliary cancer**

HCC Perihilar CCA

Biomarker	Stage/ Prevalence	Technique	Actionability	1.0 Novaldecia, Placebo
IDH	IV / 20%	NGS	lvosidenib	0 4 0 4 0 6 0 6 0 7 0 7 0 6 0 7 0 7 7
FGFR	IV / 11%	NGS	Anti-FGFR Pemigatinib	$w_{i} = 1 the same is a second with the s$
BRAF	IV /	NGS	Anti-BRAF	Anti BRAF
HER2	IV / <1%	IHC , FISH , NGS	Anti-HER2 (trial, off label)	Patients
MSI	IV / 5%	IHC, PCR	ICI	
NTRK	IV / <1%	IHC, NGS	Anti-NTRK	

UPPER GI - Biliary cancer

Is it useful to order a NGS panel?


Tumour multigene NGS could be used to detect level I actionable alterations in cholangiocarcinoma.

Given that they are unlikely to be cost-effective in these cases, larger panels can be used only on the basis of specific agreements with payers taking into account the overall cost of the strategy (including off-label use of drugs) and pending a ranking of additional alterations using a valid ranking system.

Table 10. List of genomic alterations level I/II/III according to ESCAT in advanced cholangiocarcinoma (CC)					
Gene	Alteration	Prevalence	ESCAT	References	
IDH1	Mutations	20%	IA	Abou-Alfa G. K, et al. Ann Oncol. 2019 ¹²⁹	
FGFR2	Fusions	15%	IB	Vogel A, et al. <i>Ann Oncol.</i> 2019 ¹³⁰	
	MSI-H	2%	IC	Marabelle A, et al. <i>J Clin</i> <i>Oncol.</i> 2020 ¹³¹	
NTRK	Fusions	2%	IC	Doebele RC, et al. <i>Lancet</i> <i>Oncol.</i> 2020 ⁵⁰	
BRAF ^{V600E}	Mutations	5%	IIB	Wainberg Z, et al. <i>J Clin Oncol.</i> 2019 ¹³²	
ERBB2	Amplifications Mutations	10% 2%	IIIA	Javle MM, et al. <i>J Clin Oncol.</i> 2017 ¹³³	
РІКЗСА	Hotspot mutations	7%	IIIA	André F, et al. <i>N Engl J Med.</i> 2019 ⁷²	
BRCA 1/2	Mutations	3%	IIIA	De Bono J, et al. <i>N Engl J Med.</i> 2020 ⁹³	
MET	Amplifications	2%	IIIA	Camidge D, et al. <i>J Clin Oncol.</i> 2018 ⁵²	

ESCAT, European Society for Medical Oncology (ESMO) Scale for Clinical Actionability of molecular Targets.

Lower GI - Colorectal cancer

Biomarker	Stage/ Prevalence	Technique	Actionability	
RAS WT	IV / 50%	PCR, Sanger, pyroseq,	Anti-EGFR (left-sided+)	A 10 - C1 + estativité C1 (0.2 - 200) (10) - C1 - C
RAS MUT	IV / 50%	BEAMing, NGS	No anti-EGFR RAS G12C (trial)	
BRAF MUT V600E	IV / 8-15%	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Lack of benefit of anti- EGFR Anti-BRAF, Encorafenib	HR (95% CI): 0.61 (0.48-0.77) Median OS in months (95% CI) ENCO/CETUX* (128 events): 9.3 (6.0-11.3) Control (157 events): 5.9 (5.1- 7.1) ENCO/CETUX* 0.4 0.2
HER2	IV / 5%	IHC , NGS	Lack of benefit of anti- EGFR Anti-HER2 (off label)	0 3 6 9 12 15 18 21 24 27 Time (months)
MSIH	I-III / 15% IV / 5%	IHC, PCR	Lack of benefit from 5- FU-therapy ICI (trial) Benefit from ICI	Progression-Free Survival Unchanged from prior proport
NTRK	IV / <1%	IHC, NGS	Anti-NTRK	
MGMT	IV /	IHC	Temozolamide (trial, off label)	

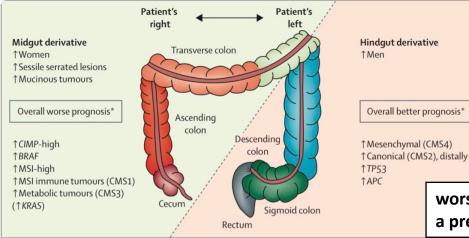
Lower GI - Colorectal cancer

Is it useful to order a NGS panel?

Since most level I alterations are hotspot mutations in KRAS, NRAS and BRAF, and considering that MSI status is determined by IHC or PCR, there is no need to test samples using multigene NGS in the context of daily practice.

Nevertheless, multigene NGS can be an alternative to PCR tests only if it does not generate extra cost compared with standard techniques already implemented in routine.

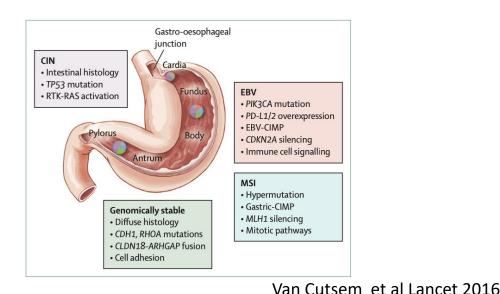
Patients with mCRC can present oncogenic alterations for which drugs are being developed and it is therefore recommended for clinical research centres to include patients in molecular screening programmes to propose access to innovative agents in clinical trials.

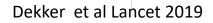

F. Mosele et al Ann of Onc 2020

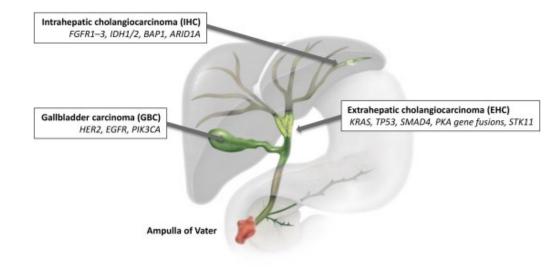
Gene	Alteration	Prevalence	ESCAT	References
KRAS NRAS	Mutations (resistance biomarker)	44% 4%	Not applicable	Van Cutsem E, et al. J Clin Oncol. 2015 ⁷⁹ Douillard J-Y, et al. N Engl J Med. 2013 ⁸⁰ Sorich M, et al. Ann Oncol. 2015 ⁸¹
BRAF ^{V600E}	Mutations	8.5%	IA	https://doi.org/10.1 093/annonc/mdw235 Kopetz S, et al. <i>N Engl J</i> <i>Med.</i> 2019 ⁸²
	MSI-H	4%—5%	IA	Overman M, et al. <i>Lancet Oncol.</i> 2017 ⁸³ Le DT, et al. <i>J Clin Oncol.</i> 2020 ⁸⁴
NTRK1	Fusions	0.5%	IC	Demetri G, et al. Ann Oncol. 2018 ⁸⁵ Doebele RC, et al. Lancet Oncol. 2020 ⁵⁰
ERBB2	Amplifications	2%	IIB	Meric-Bernstam F, et al. Lancet Oncol. 2019 ⁸⁶ Sartore-Bianchi A, et al. Lancet Oncol. 2016 ⁸⁷
РІКЗСА	Hotspot mutations	17%	IIIA	Juric D, et al. <i>J Clin</i> <i>Oncol.</i> 2018 ⁹⁰
ATM	Mutations	5%	IIIA	Wang C, et al. <i>Transl</i> Oncol. 2017 ⁹² De Bono J, et al. N Engl J Med. 2020 ⁹³
ΜΕΤ	Amplifications	1.7%	IIIA	https://clinicaltrials. gov/ct2/show/NCT035 92641 ⁹⁴
AKT1 ^{E17K}	Mutations	1%	IIIA	Hyman D, et al. <i>J Clin</i> <i>Oncol.</i> 2017 ⁷⁶
	TMB-high in MSS	1%	IIIA	Fabrizio D, et al. J Gastrointest Oncol. 2018 ⁸⁹
RET	Fusions	0.3%	IIIA	Drilon A, et al. <i>J Clin</i> Oncol. 2018 ⁹¹
ALK	Fusions	0.2%	IIIA	Yakirevich E, et al. Clin Cancer Res 2016 ⁸⁸

ESCAT, European Society for Medical Oncology (ESMO) Scale for Clinical Actionability of molecular Targets; MSI-H, microsatellite instability-high; MSS, microsatellite stable.

Personalised medicine: a different perspective

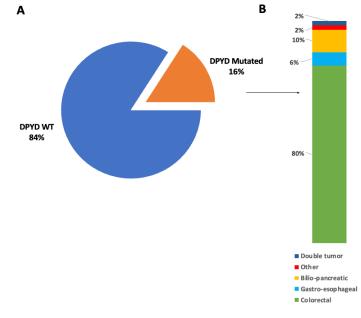

Anatomy (Tumor location) is a biomarker




Prognostic and predictive value of primary tumour side in patients with *RAS* wild-type metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomized trials[†]

worse prognosis for OS, PFS and ORR for patients with right-sided tumours and a predictive effect of tumour side.

Figure 4: Differences in right-sided versus left-sided colon and rectum


Althauda A et al Cancer Treat Rev 2020

DPYD is a biomarker

Dihydropyrimidine dehydrogenase (DPYD) is a polymorphic gene encoding for DPD, involved in fluoropyrimidines (5FU, capecitabine) catabolism

The estimated prevalence of DPYD deficient genotypes in the European population is <8%.

Test for DPYD before 5FU administration to prevent severe toxities !!! (dose modifications, in rare cases avoid 5FU)

DPYD variants	<u>N (</u> %)
c.2194G>A(*6)	37 (12%)
c.1905+1G>A(*2A)	6 (2%)
c.1129-5923C>G	4 (1%)
c.2846A>T	2 (<1%)
c.1679T>G(*13)	1 (<1%)

Table 1. DPYD deleterious variants in the overall population

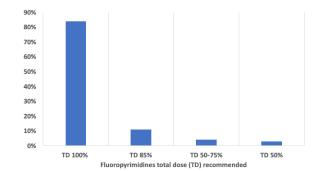


Figure 1 A. Prevalence of DPYD deleterious variants in the overall population B. Tumor type of patients carrier of DPYD deleterious variants

Figure 2. Fluoropyrimidine dose recommended according to DPYD status

Cardone et al. 2021

	Annals of Oscology 28: 2915–2922, 2017 doi:10.1093/annon/mdw411 Published online 2 August 2017						
DPYD genotype-guided dose individualization to improve patient safety of fluoropyrimidine therapy: call for a drug label update							
L. M. Henricks ^{1,2} , F. L. Opdam ^{1,2} , J. H. Beijnen ^{3,4} , A. Cats ⁵ & J. H. M. Schellens ^{1,2,4*} EUROPEAN MEDICINES AGENCY Search SCIENCE MEDICINES HEALTH Search							
Medicines 🗸 Human 🗸 Veterinary 🗸 Committees 🗙 News regulatory regulatory Veterinary							

Press release 30/04/2020

Take home message

- Personalised medicine is the key to ensure comprehensive care (type of treatment, setting (trial?), dose, duration)
- Not all biomarkers translate into clinical practice
- Some biomarkers implicate genetic counselling (hereditary syndrome)
- Relevance of molecular tumor board (to integrate knowledge and perspectives)
- Academic research is the place to discover / validate novel biomarkers and to develop clinical trials

Thank you! Questions?

